monoid - definitie. Wat is monoid
Diclib.com
Woordenboek ChatGPT
Voer een woord of zin in in een taal naar keuze 👆
Taal:

Vertaling en analyse van woorden door kunstmatige intelligentie ChatGPT

Op deze pagina kunt u een gedetailleerde analyse krijgen van een woord of zin, geproduceerd met behulp van de beste kunstmatige intelligentietechnologie tot nu toe:

  • hoe het woord wordt gebruikt
  • gebruiksfrequentie
  • het wordt vaker gebruikt in mondelinge of schriftelijke toespraken
  • opties voor woordvertaling
  • Gebruiksvoorbeelden (meerdere zinnen met vertaling)
  • etymologie

Wat (wie) is monoid - definitie

ALGEBRAIC STRUCTURE WITH AN ASSOCIATIVE OPERATION AND AN IDENTITY ELEMENT
Monoid (algebra); Commutative monoid; Monoid homomorphism; Monoids; Abelian monoid; Monoid morphism; Submonoid; Finitely generated monoid; Complete monoid; Continuous monoid
  • groups]]. For example, monoids are [[semigroup]]s with identity.
  • ('''N''', ×, 1)}}}}. It is injective, but not surjective.

monoid         
An operator * and a value x form a monoid if * is associative and x is its left and right identity.
Rational monoid         
Quasi-rational monoid; Fibonacci monoid; Kleene monoid
In mathematics, a rational monoid is a monoid, an algebraic structure, for which each element can be represented in a "normal form" that can be computed by a finite transducer: multiplication in such a monoid is "easy", in the sense that it can be described by a rational function.
Plactic monoid         
Knuth equivalence; Knuth transformation; Plaxic monoid; Plaxique monoid; Plastic monoid; Plactic algebra; Tableau algebra; Tableau ring; Plactic ring; Plectic monoid
In mathematics, the plactic monoid is the monoid of all words in the alphabet of positive integers modulo Knuth equivalence. Its elements can be identified with semistandard Young tableaux.

Wikipedia

Monoid

In abstract algebra, a branch of mathematics, a monoid is a set equipped with an associative binary operation and an identity element. For example, the nonnegative integers with addition form a monoid, the identity element being 0.

Monoids are semigroups with identity. Such algebraic structures occur in several branches of mathematics.

The functions from a set into itself form a monoid with respect to function composition. More generally, in category theory, the morphisms of an object to itself form a monoid, and, conversely, a monoid may be viewed as a category with a single object.

In computer science and computer programming, the set of strings built from a given set of characters is a free monoid. Transition monoids and syntactic monoids are used in describing finite-state machines. Trace monoids and history monoids provide a foundation for process calculi and concurrent computing.

In theoretical computer science, the study of monoids is fundamental for automata theory (Krohn–Rhodes theory), and formal language theory (star height problem).

See semigroup for the history of the subject, and some other general properties of monoids.